The Salmonella Type III Effector SspH2 Specifically Exploits the NLR Co-chaperone Activity of SGT1 to Subvert Immunity
نویسندگان
چکیده
To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL) effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR) model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.
منابع مشابه
Salmonella pathogenicity island 2-mediated overexpression of chimeric SspH2 proteins for simultaneous induction of antigen-specific CD4 and CD8 T cells.
Salmonella enterica serovar Typhimurium employs two different type III secretion systems (TTSS) encoded within Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) for targeting of effector proteins into the cytosol of eukaryotic cells during different stages of the infection cycle. The SPI1 TTSS translocates virulence factors across the plasma membrane when the bacterium initially contacts...
متن کاملThe Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy
While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer) or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule) and an asymmetric complex (Sgt11-Hsp902-Ra...
متن کاملStructural Basis for Assembly of Hsp90-Sgt1-CHORD Protein Complexes: Implications for Chaperoning of NLR Innate Immunity Receptors
Hsp90-mediated function of NLR receptors in plant and animal innate immunity depends on the cochaperone Sgt1 and, at least in plants, on a cysteine- and histidine-rich domains (CHORD)-containing protein Rar1. Functionally, CHORD domains are associated with CS domains, either within the same protein, as in the mammalian melusin and Chp1, or in separate but interacting proteins, as in the plant R...
متن کاملImmunization with recombinant Salmonella expressing SspH2-EscI protects mice against wild type Salmonella infection
BACKGROUND Enhancing caspase-1 activation in macrophages is helpful for the clearance of intracellular bacteria in mice. Our previous studies have shown that EscI, an inner rod protein of type III system in E. coli can enhance caspase-1 activation. The purpose of this study was to further analyze the prospect of EscI in the vaccine design. RESULTS A recombinant Salmonella expressing SspH2-Esc...
متن کاملSystemic CD8 T-cell memory response to a Salmonella pathogenicity island 2 effector is restricted to Salmonella enterica encountered in the gastrointestinal mucosa.
To better understand the evolution of a systemic memory response to a mucosal pathogen, we monitored antigen-specific OT1 CD8 T-cell responses to a fusion of the SspH2 protein and the peptide SIINFEKL stably expressed from the chromosome of Salmonella enterica and loaded into the class I pathway of antigen presentation of professional phagocytes through the Salmonella pathogenicity island 2 typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013